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SUMMARY

High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The

deterministic quadrupoles have been shown to contribute signi�cantly to high-speed impulsive (HSI) noise

of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of

the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a

formulation suitable for e�cient prediction of quadrupole noise inside the sonic circle. In this paper, we

give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic

quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the

far �eld and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of

this formulation in the paper. We present the method of implementation on a computer for supersonic

quadrupoles using marching cubes for constructing the in
uence surface (� surface) of an observer space-

time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic

quadrupoles. It is shown that in the case of transonic 
ow over rotor blades, the inclusion of the supersonic

quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new

formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole

source strength are primarily produced by the shock surface and the 
ow over the leading edge of the rotor.

The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

1. INTRODUCTION

High-speed 
ight of helicopters has been an illusive goal because of the rapid increase in rotor noise and
vibration. Noise and vibration increase dramatically because of the increasing disparity between the 
uid
velocity over the advancing and the retreating rotor blades. When the supersonic 
ow region on the advancing
rotor blade extends o� the blade into the far �eld (a phenomenon known as delocalization [1]), high-speed
impulsive (HSI) noise becomes dominant over all the other rotor noise sources. For this reason, the e�cient
prediction of the HSI noise of helicopter rotors is currently an important problem of aeroacoustics. The cause
of this noise has been identi�ed since the late 1970's [1, 2] as the deterministic quadrupoles in the vicinity
of the rotor, and, in the case of delocalization, beyond the sonic circle and the blade tip. Many schemes
have been proposed by researchers based on the acoustic analogy [3{9] and the Kirchho� method [10, 11].
At present, most of these schemes are limited to subsonic quadrupole source motion, however, very recently
several methods have been proposed for the prediction of noise from supersonic sonic sources [12{15]. In
the case of subsonic quadrupole noise prediction, a method based on a formulation by Brentner, formulation
Q1A, exists [7] which is exact for an in-plane, far-�eld observer but is approximate elsewhere. This method
has been implemented in the code WOPWOP+ [6,7] and has been shown to be highly e�cient and robust.
There is a need for an e�cient and robust method of prediction of the supersonic quadrupole noise. We
present a new formulation|based on the same model used by Brentner|that is valid for both subsonic and
supersonic quadrupole noise prediction.
The derivation of a supersonic quadrupole formulation, which we call formulation Q2, is the main result of

this paper. In Section 2 we start with an exact solution of the wave equation for quadrupole sources of the
Ffowcs Williams{Hawkings (FW{H) equation given by Farassat and Brentner [16]. In this solution, volume
integrals involving the quadrupole sources are only di�erentiated with respect to observer time. We write
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these volume integrals in terms of a surface integral over the collapsing sphere and a source time integral. For
an observer in the rotor plane and in the far �eld, the collapsing sphere is approximated as a right circular
cylinder normal to the rotor disc and the quadrupole source strength is integrated along lines normal to
the rotor disc and treated as sources on the rotor disc. We then hypothesize that the quadrupole noise
everywhere can be predicted using these surface sources. This hypothesis has been validated by Brentner
and Holland [6]. The idea of approximating the volume (quadrupole) sources with equivalent surface sources
was originally proposed and numerically implemented by Yu et al. [1] for the far-�eld solution of the FW{H
equation. Later this idea was also implemented by Schultz and Splettstoesser [3], Brentner and Holland [6],
and Brentner [7]. Our main contribution has been to use this idea in obtaining closed-form solutions of the
same equation, formulations Q1A and Q2, which seem to result in more e�cient prediction of HSI noise. The
new formulation (Q2) presented here is very simple and unlike formulation Q1A is valid for both subsonic and
supersonic quadrupoles. Hence we can directly compare quadrupole noise predictions from both formulations
in the subsonic case.

In Section 3 we discuss how formulation Q2 is implemented in a new testbed code called WOPWOP2+.
The quadrupole sources beyond the sonic circle can have multiple emission times and the usual solution of
the wave equation for subsonic surface sources (e.g., formulations 1, 1A, and Q1A) will have a singularity
known as the Doppler singularity. To avoid this Doppler singularity, it is necessary to use a �-surface
formulation [17,18]. The method of construction of the � surface used in WOPWOP2+ is known as marching
cubes [19]|an algorithm originally developed for computer graphics [20].

Some examples of HSI noise prediction for a hovering rotor is presented in Section 4. First we present a
comparison of the results of noise prediction for subsonic quadrupoles based on formulations Q1A and Q2. It
is shown that the results agree well with each other. A study of the surface source strength (i.e., the integral
of quadrupole source strength along the line normal to rotor disc) shows that the primary contributions to
the quadrupole noise come from the shock surfaces on and beyond the blade and the 
ow over the leading
edge of the blade. It is also shown that the inclusion of the quadrupole sources beyond the sonic circle
improves the prediction of the width of the main pulse and the shape of the acoustic pressure signature and
agreement with experimental data. Finally, we demonstrate the robustness of the formulation by performing
predictions for out-of-plane and near-�eld observers. Concluding remarks follow in Section 5.

2. FORMULATION AND SOLUTION OF THE PROBLEM

We begin with the solution of the following wave equation for quadrupole noise radiation from the Ffowcs
Williams{Hawkings equation:

2p0Q(x; t) =
�@2

@xi@xj
[TijH(f)] (1)

where the bar over the partial derivative operator indicates generalized di�erentiation, Tij is the Lighthill
stress tensor, H(f) is the Heaviside function, and f = 0 describes the blade surface (f > 0 outside the
blade). The solution for this equation was given by Farassat and Brentner [16] as follows:
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where the quantity Trr is the double contraction Tij r̂ir̂j , and r̂i are the components of the unit vector in the
radiation direction. In addition, d
 is an element of the collapsing sphere surface g = 0. We now assume
that the observer is in the far �eld and on the rotor plane. The part of the collapsing sphere intersecting
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Figure 1. The actual and approximate collapsing sphere surfaces in the vicinity of the rotor blade.

the source region near the rotor blade can be approximated by a right circular cylinder normal to the rotor
plane. This is shown in �gure 1.

Let us assume that the rotor is nominally in the y1y2{plane and y3 is, therefore, perpendicular to this
plane (i.e., the rotor tip-path plane). We integrate the inner integrals of equation (2) with respect to y3 over
the approximate collapsing sphere surface. Let us de�ne

Qij(y1; y2; �) =

1Z

�1

Tij dy3 (3)

and use the relation

d� = c d�d� (4)

where d� is the length of an element of the curve de�ned by the intersection of the collapsing sphere with
the rotor disc. Equation (2) can now be written as
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where the subscript ret indicates the integrand is evaluated at the retarded time. The integrals in equation (5)
are all over the entire y1y2{plane. This fact allows us to bring the observer-time derivatives inside the integrals
without worrying about the limits of integration.

The next step is the most crucial in the derivation of the �nal result. We note that @=@t = @=@tjx
meaning x in the frame �xed to the undisturbed medium is kept �xed in this di�erentiation. Also note that
the tensor Q with components Qij is de�ned in the x frame of reference, hence all velocity terms in Qij(x; t)
are speci�ed with respect to the frame �xed to the undisturbed medium. However, if we use a change of
coordinates (x; t) ! (�; �), where the �-frame is aligned with the rotor blade (i.e., by coordinate rotation
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and translation), we have
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where � is the position vector in the rotating frame and � is the source time. Here V = @�=@� is the
velocity of the point � speci�ed in the frame �xed to the undisturbed medium. We note that V is in the
rotor plane. It is important to recognize that when we refer to Qij j� we really mean that the components
of the tensor Qij represented in coordinates that are instantaneously aligned with the rotating frame. Thus
equation (6) provides the time derivative of Qij jx in the stationary frame in terms of Qij j� which is speci�ed
in the coordinates of the moving frame. Using this operator notation in equation (5), we get
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Notice that the operator L� operates on Qij only because r̂i and r̂j do not depend upon t or � . To write
this equation in �nal form we express V(�; �) as follows:

V = VF + ! � � (8)

where VF is the forward velocity of the rotor, ! is the angular velocity of the rotor, and � is the position
vector of the source Qij in the rotor plane with the origin at the rotor center. We assume that both VF and
! are time independent and we note that ! = j!j. From equation (8), we have
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All the gradients are with respect to �. We have
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where @=@� is the directional derivative in the � (radial direction) and � = j�j. We also have
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and V = (V1; V2). Therefore, L
2
� can be written as
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When this expression is used in equation (7), we get a singularity free expression for supersonic quadrupole
noise prediction. We note that equation (7) has second space and time derivatives of Qij as well as �rst
space derivatives in the �1�2{plane (the rotor plane). These quantities are available in the CFD postprocessor
that is used to compute Qij for acoustic calculations. We will refer to equation (7) as formulation Q2. As
it stands, formulation Q2 is valid for subsonic and supersonic quadrupole noise prediction for helicopter
rotors in hover or forward 
ight. Note that this equation is very simple and has no singularities. We have
assumed that the shocks on the blades are smeared over one or more grid cells and that Qij has continuous
second derivatives over the rotor plane (although the magnitude of the second derivative can be very high at
the foot of the shocks). These assumptions are generally satis�ed in CFD calculations for helicopter rotor
aerodynamics.

2.1. ANALYSIS OF MAIN RESULT

We will now do an order of magnitude study of the far-�eld term of our main result, equation (7). We can
draw very useful conclusions from such a study as will be shown below. We know that the peak of directivity
of quadrupole noise is in the rotor plane with the observer ahead of the helicopter. Let us put the observer
in such a location in the far �eld. Then in the frame �xed to the undisturbed medium (where x1-axis is the

ight direction and the x3-axis is normal to the rotor plane), the components of the unit radiation vector
can be approximated as r̂ = (1; 0; 0). The major contribution to the far-�eld quadrupole noise comes from
Q11 which we will look at closely below.
The numerator of the integrand of the far-�eld term is

L2
�Q11 =
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���
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We can now estimate the order of magnitude of each term in equation (15) as follows. Let the advancing tip
speed be denoted by VAT . Then, we see that
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In these equations, the derivative @=@�1 is the directional derivative in the chordwise direction. Note that
for a hovering rotor @Q11=@� , @

2Q11=@�
2, and VF are all zero, therefore the only remaining component is

(V �r0)2Q11. Since !, in general, is small for helicopter rotors, we can see that the dominant term in forward

ight is also most likely the term (V � r0)2Q11. The right side of equation (16c) can be further estimated as

V 2
AT

@2Q11

@�21
�

V 2
ATQ11

(��1)2
(17)

where ��1 is the chordwise scale over which signi�cant change in Q11 occurs. Signi�cant changes of Q11

occur near both the leading edge stagnation point and the base of the shock. Hence we suspect that the
dominant sources of quadrupole noise will be located at these locations (��1 � LE radius and ��1 � width
of the projection of the shock surface in the rotor plane). These conclusions are veri�ed by the computation
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Figure 2. Contours of L2
�Q11 in the vicinity of a hovering UH-1H rotor, MH = 0:925.

of L2
�Q11 for a hovering UH-1H model rotor blade at tip Mach number 0:925 shown in �gure 2. It is

apparent in the �gure that the primary source of HSI noise is the shock wave (as proposed by Farassat and
his colleagues|see references 16,21{23) and the 
ow over the leading edge of the blade. The signi�cance of
the quadrupole source in the leading edge region has not been widely recognized in previous work, however,
it has been found here to be of comparable amplitude to the quadrupole source strength in the shock region.

3. NUMERICAL IMPLEMENTATION

A new code, called WOPWOP2+, is used to demonstrate the utility of formulation Q2. WOPWOP2+
di�ers signi�cantly from WOPWOP+ [6,7] in that it uses a �-surface formulation to compute thickness and
loading noise, as well as the quadrupole noise. The construction of the � surface and subsequent integration
over the � surface is performed using the method of marching cubes integration developed by Brentner [19].
The numerical calculation of quadrupole noise has been divided into two stages: a preprocessing stage in
which the integration of the Lighthill stress tensor in the normal direction, indicated in equation (3), is
carried out, and an evaluation stage in which the quadrupole contribution to the acoustic pressure speci�ed
in equation (7) is determined. Both the preprocessor and the acoustic calculation are described brie
y in this
section. More information on the preprocessor, which is the same preprocessor that is used by WOPWOP+,
can be found in reference 6.

3.1. PREPROCESSOR

Although the evaluation of Qij can be performed independently of observer position and retarded time, the
preprocessor must read in the CFD solution, interpolate the solution at the necessary quadrature locations,
and then perform the numerical quadrature in the direction normal to the rotor disc. The preprocessor needs
knowledge of both the CFD grid topology and the solution format. In the implementation used for this work,
the interpolation of the CFD data is two dimensional and is done one radial station at a time. For a given
radial station, data are interpolated to quadrature points needed for composite Gauss-Legendre integration,
on lines normal to the rotor plane. The lines are uniformly distributed in the chordwise direction. A two-
dimensional linear least-squares interpolation is used to interpolate the density, momentum, and energy at
each quadrature point. The Lighthill stress tensor Tij is evaluated with the interpolated data. The value of
Qij on the rotor disc is determined at each chordwise location before moving to the next radial station. The
results are stored for the acoustic calculation stage. The CFD data used for the noise prediction [24] was
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Figure 3. Typical quadrupole grid used for WOPWOP2+ calculations for hovering UH-1H rotor. Note that
only every 4th grid line is shown in the chordwise direction.

given on a grid with rather coarse radial resolution beyond the blade tip. The quadrupole source strength
radial resolution o� the blade tip was increased �ve fold by utilizing 6th order polynominal interpolation
along radial grid lines for both the location and strength of the quadrupole data. A typical grid generated
by the quadrupole preprocessor is shown in �gure 3.

3.2. WOPWOP2+

The primary function of the WOPWOP2+ code is to perform the integration indicated in equation (7)
numerically. Although the integration is over the entire rotor disc plane, in practice the source strength
is zero over a large part of the plane; hence, the quadrupole integration is only performed near the rotor
blade (see �gure 3). The main di�culty in the numerical evaluation of equation (7) is the construction of
the � surface for the portion of the plane in which the source strength is nonzero. The � surface is the
collection of points in space-time that emit signals that reach the observer at one particular observer time.
The integration is complex because the pointwise mapping between the physical source plane and the �
surface is not known explicitly. Special care must be taken in the construction because in practice the �
surface may be composed of several disjoint pieces when the source motion is supersonic|exactly the case
we are interested in. Figure 4 shows a typical evolution of the � surface. Notice that in in the �rst few time
steps each position on the � surface is single valued (i.e., a point only occurs at one azimuthal position),
but later the leading edge and eventually the entire outer portion of the surface becomes triple valued (i.e.,
point near the tip of the grid may occur at three azimuthal positions).
The marching cubes method begins constructing the � surface by choosing the source time and computing

the corresponding observer time and integrand value at each grid point. If the observer times are computed
and stored for each desired source time, the discrete computational data become a three-dimensional array;
two computational indices parameterize the surface spatially and a third index accounts for the source time.
In this three-dimensional computational space, isosurfaces of observer time t are, by de�nition, distinct
realizations of the � surface. The extension of the marching-cubes algorithm for surface integration [19]
determines how the surface intersects a logical cube in the three-dimensional computational grid, computes
the contribution to the integral from that portion of the surface, and then moves (or marches) to the next
cube. The topology of the surface within a single cube can be determined uniquely by examining the
function value (observer time in this case) at each of the cube vertices and comparing this value to the
desired surface value. A table lookup is then used to determine the exact topology of the surface in the
current cube. The surface is formed by a set of triangular panels that have vertices on the edges of the
cubes. The value of the surface integral over each triangle is approximated as the average integrand value of
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Figure 4. Evolution of the �-surface geometry and integrand strength distribution r̂ir̂jL
2
�Qij=r a function

of observer time. The observer is located 3.09R from the rotor hub and the rotor tip velocity is MH = 0:95.
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the triangle vertices multiplied by the triangle area. Linear interpolation is used to determine the integrand
values at the triangle vertices based on the previously computed value at the cube vertices. The marching
cubes algorithm is generic|the only di�erence in computing thickness, loading, or quadrupole noise is the
value of the integrand computed at each grid vertex. (For more detail on the marching cubes algorithm, see
references 19 and 20.)
The version of the marching-cubes algorithm used for the calculations in this paper was adaptive|that

is the integral value for a single cube was compared to the value obtained using the 8 subcubes obtained by
bisecting each of the sides of the original cube. If the di�erence between the integral values was greater than
a speci�ed tolerance, each of the subcubes were also subdivided in a recursive manner. Six levels of recursion
were allowed in the computations for this paper. When a cube was divided, the quadrupole source strength
at the new vertices was computed using linear interpolation, but the observer time and source location were
computed without approximation. Finally the integrand values were computed anew at each of the new
vertex locations.

For simplicity, the current WOPWOP2+ code only implements formulation Q2 for a hovering rotor. For
a hovering rotor, L�Qij and L2

�Qij can be written in the form

L�Qij = �
�
! � �

�
� r�Qij = �!�

@Qij

@�1
(18a)

and

L2
�Qij =

�
! � �

�
� r�

��
! � �

�
� r�Qij

�
= !2�2

@2Qij

@�21
(18b)

where @=@�1 is the directional derivative in the azimuthal direction and � = j�j. Equation (18) is implemented
numerically in WOPWOP2+ with a second-order accurate central-di�erence operators.

4. NUMERICAL RESULTS

In this section we �rst make a comparison of the acoustic pressure signatures of a hovering model rotor
from WOPWOP+ and WOPWOP2+ which use formulations Q1A and Q2, respectively. Then, we present
the comparison of the predicted and measured acoustic pressure signatures for the same hovering model
rotor at four di�erent tip Mach numbers. At the three highest tip Mach numbers, the phenomenon of
delocalization occurs and WOPWOP2+ must be used for HSI noise prediction if the contribution of the
supersonic quadrupoles is to be included in the prediction. The remaining analysis examines the role of the
supersonic quadrupoles and the robustness of the formulation.
A model-scale rotor test conducted by Boxwell et al. in 1978 [25] and repeated later by Purcell in 1988 [26]

is used for comparison. The measured data was for nonlifting hovering rotor generating HSI noise. The rotor
was a 1=7th scale UH-1H main rotor with straight untwisted blades and NACA 0012 airfoil section. The
rotor radius R was 1:045 m with a chord of 7:62 cm. The measured data reported here are all from a
microphone in the rotor plane and at 3:09R from the rotor tip. The Euler solutions utilized as input in this
numerical work were provided by Baeder and are described in references 5 and 24. The Euler solutions are
also used for direct comparison with the acoustic prediction when experimental data is unavailable.

4.1. COMPARISON OF FORMULATIONS

Figure 5 shows a comparison of the predicted acoustic pressure signatures from WOPWOP+ (formulation
Q1A) andWOPWOP2+ (formulation Q2) at tip Mach number 0:925. The thickness and loading, quadrupole,
and total acoustic pressure time histories predicted by each of the codes are also shown in this �gure.
Although the supersonic quadrupoles are important in prediction of the acoustic pressure signature because
delocalization occurs at this operating condition, WOPWOP+ can only handle subsonic quadrupole sources;
therefore, we have only used the subsonic quadrupole sources in both predictions for this comparison. We
have utilized the marching cubes approach to construct the � surface (in
uence surface) of the rotor blade
and the quadrupole source surface in WOPWOP2+. A good agreement in this comparison proves two
points. First, it will tell us that the construction of the � surface is correct in WOPWOP2+. Second, the
two formulations Q1A and Q2 are equivalent. Both these points are evident in �gure 5. This �gure also
shows that the individual components due to thickness and loading and the quadrupole sources as well as the
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Figure 5. Comparison of WOPWOP+ prediction (�) with subsonic WOPWOP2+ prediction ( ) for a
UH-1H hovering rotor, MH = 0:925. Quadrupole grid extends 0:075R beyond rotor tip. (a) thickness and
loading components; (b) quadrupole component; (c) total acoustic pressure.
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total acoustic pressure signatures from the two codes agree well. Thus, we have established some con�dence
in using WOPWOP2+ for prediction of HSI noise.

4.2. COMPARISON WITH MEASURED DATA

We now present HSI noise calculations for tip Mach numbers 0:88, 0:9, 0:925, and 0:95 in �gure 6. The
quadrupole grid extends 1:86R beyond the blade tip for all the WOPWOP2+ calculations shown in �gure 6.
For comparison, we have also shown the WOPWOP+ signature which includes quadrupole sources up to the
sonic circle. It is seen that the agreement of the WOPWOP2+ signature with the measured data is excellent
and better than that of WOPWOP+ for each case. We have, thus, demonstrated the ability to predict the
noise from supersonic quadrupoles in the case of delocalized shocks and the resulting improvements in the
overall shape and level of the acoustic pressure.
For the more intense cases (MH > 0:90), the agreement of the WOPWOP2+ prediction with the mea-

sured acoustic pressure signature is not fully satisfactory because the WOPWOP2+ prediction overpredicts
the negative peak pressure. This is apparent in �gure 6 for the times between the WOPWOP+ and the
WOPWOP2+ shock locations. A closer examination of the � surface and the quadrupole integrand strength
distribution for this time range, shown in �gure 7, reveals that this time range is precisely when the region of
the strongest quadrupole integrand strength is is bifurcating (i.e. transitioning from subsonic to supersonic).
Notice in particular that the area of the highest and lowest values (lightest and darkest, respectively) change
dramatically during this time range. Hence relatively small errors in the peak values of L2

�Qij can result in
ampli�ed error. To reduce the sensitivity of the acoustic predictions to this type of error, we utilized a 7
point, moving-window-average smoothing in the chordwise direction of the quadrupole source strength. This
smoothing had only a small e�ect on the acoustic signal away from the shock, but was useful to reduce the
error previously noted. Figure 8 is a representative comparison of the smoothed and unsmoothed acoustic
predictions. (Note smoothing was used in all of the computations for this paper except the MH = 0:88 case
where the shock strength did not seem to warrant smoothing.)
It is well known that the quadrupole accounts for the nonlinear propagation e�ects caused by the �nite

particle velocity and the variation of sound speed in the physical problem. The calculations shown in �gure
6 seems to indicate that the primary role of the supersonic quadrupoles is to increase the pulse width of
intense propagating waves. The width of the main pulse of the signatures predicted by WOPWOP2+ agrees
very well with the measured signature. Even for theMH = 0:88 case, which is not delocalized, the supersonic
quadrupoles improve the agreement by increasing the width and amplitude of the acoustic signal. For the
delocalized cases, the supersonic quadrupoles also decrease the slope, and thus improve the agreement, of the
triangular shape proceeding the rapid increase in acoustic pressure. Figure 9 shows the e�ect of the extent
of the quadrupole grid for the particularly intense MH = 0:95 case. Three separate computations were
made with the quadrupole source grid extending beyond the rotor tip 0:05R, 0:33R, and 1:86R, respectively.
The quadrupole grid is shown in �gure 9a with the three grid extents indicated. The �rst WOPWOP2+
computation, 0:05R beyond the rotor tip, is essentially identical to the WOPWOP+ calculation shown in
�gure 6d. Notice that the prediction for the largest grid extent, 1:86R beyond the rotor tip, agrees very well
with the data in both waveform width and shape. These computations suggest two things: even though the
quadrupole correctly predicts the nonlinear propagation (i.e., the widening and changing of the waveform
shape), it is probably an ine�cient tool for predicting the nonlinear propagation because an accurate CFD
computation must proceed the quadrupole prediction; and it seems likely that the nonlinear propagation
could be determined more appropriately by another method starting with the acoustic signal somewhat
closer to the rotor.

4.3. FORMULATION ROBUSTNESS

In this section we wish to demonstrate the robustness of the method by performing predictions which
violate some of the assumptions leading to formulation Q2. First we predict the noise for out-of-plane
observer and compare the acoustic pressure with an Euler solution. Secondly, we predict the noise for a very
near-�eld observer.
The acoustic pressure was predicted using WOPWOP+ and WOPWOP2+ at two observer locations

directly below the an in-plane observer at 3:09R from the rotor hub. These observers are 10 and 20 deg below
the rotor plane, respectively. In �gure 10 we show these prediction for theMH = 0:9 case. No measured data
are available at these observer locations, therefore, we have interpolated the Euler solutions [5] used as input.
It is seen that the two sets of calculations agree fairly well with each other, but the WOPWOP2+ result
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Figure 6. Comparison of WOPWOP+ ( ) and WOPWOP2+ ( ) predicted acoustic pressure with
experimental data [26] ( ) for hovering model UH-1H rotor. Quadrupole grid in WOPWOP+ prediction
extended almost to sonic circle and in WOPWOP2+ predictions extended 1:86R beyond the rotor tip. (a)
MH = 0:88; (b) MH = 0:90; (c) MH = 0:925; (d) MH = 0:95.
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(a) (b)

(c) (d)

Figure 7. Evolution of quadrupole integrand strength distribution r̂ir̂jL
2
�Qij=r on the emission surface as a

function of observer time for times near the peak negative acoustic pressure. Dark and light shading indicates
negative and positive values of r̂ir̂jL

2
�Qij=r respectively. Note the extremely rapid change in the contours

area as the source region bifurcates.(a) t = 1:050 msec; (b) t = 1:117 msec; (c) t = 1:183 msec; (d) t = 1:250
msec.
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Figure 8. Comparison of WOPWOP2+ prediction with unsmoothed Qij input data (�) with the prediction
made using Qij smoothing ( ). A 7-point moving-window average smoothing was applied in the chordwise
direction for a UH-1H hovering rotor, MH = 0:925.

characterizes the waveform width and asymmetry slightly better for the 10 deg down observer. Furthermore,
as expected, the peak negative value of the main pulse of the acoustic pressure reduces with increasing
observer angle. When the observers is 20 deg below the rotor plane the agreement is good for both methods,
but the quadrupole contribution is relatively small. The chordwise smoothing of the quadrupole source
strength in the WOPWOP2+ computation is believed to be responsible for the lower amplitude in the
10 deg down prediction; since the quadrupole contribution is small in the 20 deg down case the e�ect of
smoothing is not readily noticeable.

In a second comparison, shown in �gure 11, we have predicted the acoustic pressure with WOPWOP2+
at an in-plane observer 1:094R from the rotor hub. This observer is just inside the sonic circle and is less
than two chordlengths from the rotor tip at the closest distance. The quadrupole grid extends almost to
the observer. WOPWOP+ was unable to determine the retarded time satisfactorily for this severe test case
because the root �nding algorithm exceeded the number of iterations allowed. The WOPWOP2+ prediction
slightly underpredicts the Euler solution; nevertheless, the comparison is extremely good at this very near-
�eld location. In particular, the WOPWOP2+ prediction agrees perfectly with the Euler data both before
the negative peak and for the curved part of the signal at the top of the shock-like structure after the
negative peak. The far-�eld and near-�eld quadrupole terms (terms with 1=r dependence and terms with
1=r2 and 1=r3 dependence, respectively) from equation (7) are also shown in �gure 11. Clearly the near-�eld
quadrupole terms|usually neglected by other researchers|contribute signi�cantly to the correct prediction
of waveform shape at this close distance. Figure 11 demonstrates the importance of keeping all of the terms
so that the acoustic prediction can be compared directly with CFD [16]. Both �gures 10 and 11 demonstrate
the robustness of formulation Q2.

5. CONCLUDING REMARKS

We have presented a new quadrupole noise prediction method based on a new analytic result, called
formulation Q2, valid for both subsonic and supersonic quadrupole sources. The new formulation is very
simple and without any singularity. The procedure for implementation of the result is discussed in the
paper. This new code is called WOPWOP2+. We have demonstrated that formulation Q2 is equivalent to
formulation Q1A of Brentner used in WOPWOP+ for subsonic quadrupole sources. By order of magnitude
study of the formulation Q2 far-�eld integrand, we have shown that the shock surfaces and the stagnation

ow at the leading edge of the blade are regions of high source intensity. We have shown that for rotors
operating at high tip Mach numbers|before and after delocalization|the new formulation predicts acoustic
pressure signatures which agree well with the experimental data in both the shape and the level of the main
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Figure 9. E�ect of quadrupole grid extent shown for hovering UH-1H rotor, MH = 0:95. (a) quadrupole
grid (every 10th grid line in chordwise direction shown); (b) predicted acoustic pressure for three quadrupole
grid extents: , 0:05R beyond rotor tip (subsonic); , 0:33R beyond rotor tip; , 1:86R beyond
rotor tip; experimental data [26].
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Figure 10. Comparison of WOPWOP+ ( ), WOPWOP2+ ( ), and Euler [5,24] (�) predicted acoustic
pressures for hovering model UH-1H rotor, MH = 0:90. (a) 10 deg below rotor plane; (b) 20 deg below rotor
plane.
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Figure 11. Near-�eld noise prediction at in-plane observer located 1:094R from rotor hub for hovering model
UH-1H rotor, MH = 0:90 with quadrupole grid 0:0935R beyond rotor tip. , far-�eld quadrupole
component; , near-�eld quadrupole components; , WOPWOP2+ total acoustic pressure; �, Euler
[5, 24] total acoustic pressure.

pulse of the signature. We have also shown that the supersonic quadrupoles widen and modify the shape
of the waveform. A new and robust option is now available for prediction of HSI noise of helicopter rotors
based on formulation Q2.
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